
May 2019 1 of 45

Projective Splitting Methods for
Decomposing Convex Optimization

Problems
Jonathan Eckstein

Rutgers University, New Jersey, USA

Various portions of this talk describe joint work with
Patrick Combettes — NC State University, USA
Patrick Johnstone — Rutgers University, USA

Benar F. Svaiter — IMPA, Brazil
Also: Jean-Paul Watson — Sandia National Labs, USA

David L. Woodruff — UC Davis, USA

Funded in part by NSF grants
CCF-1115638, CCF-1617617, and
AFOSR grant FA9550-15-1-0251

May 2019 2 of 45

Introductory Remarks

• I did some of the earlier work on an optimization algorithm
called the ADMM (the Alternating Direction Method of
Multipliers)
o But not the earliest work

May 2019 3 of 45

Introductory Remarks

• I did some of the earlier work on an optimization algorithm
called the ADMM (the Alternating Direction Method of
Multipliers)
o But not the earliest work

• I know that the ADMM has been used in image processing

because about 15 years ago I started being asked to referee a
deluge of papers with this picture:

May 2019 4 of 45

Introductory Remarks

• I did some of the earlier work on an optimization algorithm
called the ADMM (the Alternating Direction Method of
Multipliers)
o But not the earliest work

• I know that the ADMM has been used in image processing

because about 15 years ago I started being asked to referee a
deluge of papers with this picture:

May 2019 5 of 45

Introductory Remarks

• I did some of the earlier work on an optimization algorithm
called the ADMM (the Alternating Direction Method of
Multipliers)
o But not the earliest work

• I know that the ADMM has been used in image processing

because about 15 years ago I started being asked to referee a
deluge of papers with this picture:

• Today I want to talk about an algorithm that uses similar

building blocks to the ADMM but is much more flexible

May 2019 6 of 45

More General Problem Setting

The algorithms in this talk can work for monotone inclusion
problems of the form

*

1
0 ()

n

i i i
i

G T G x
=

∈∑

where

• 0, , n  are real Hilbert spaces

• :i i iT   are (generally set-valued) maximal monotone
operators, 1, ,i n= 

• 0:i iG   are bounded linear maps, 1, ,i n= 

However, for this talk we will restrict ourselves to...

May 2019 7 of 45

A General Convex Optimization Problem

{ }1
min ()n

i iix
f G x

=∑

• For 1, ,i n=  , : { }ip
if → ∪ +∞  is closed proper convex

• For 1, ,i n=  , iG is a ip m× real matrix

• Assume you have a class of such problems that is not suitable
for standard LP/NLP solvers because either

o The problems are very large

o They is fairly large but also dense

May 2019 8 of 45

Subgradient Maps of Convex Functions, Monotonicity

The subgradient map f∂ of a convex function { }: pf → ∪ +∞  is
given by

{ }() (') () , ' ' pf x y f x f x y x x x∂ = ≥ + − ∀ ∈ .

This has the property that

(), ' (') ', ' 0y f x y f x x x y y∈∂ ∈∂ ⇒ − − ≥

Proof:

(') () , '
() (') ', '

0 ' , '

f x f x y x x
f x f x y x x

y y x x

− ≥ −

− ≥ −

≥ − −

May 2019 9 of 45

Normal Cone Maps

The indicator function of a nonempty closed convex set C is

0,
()

,C

x C
x

x C
δ

∈
= +∞ ∉

Its subgradient map is the normal cone map CN of C:

{ }, ' 0 ' ,
() ()C C

y y x x x C x C
x N x

x C
δ

 − ≤ ∀ ∈ ∈
∂ = = 

∅ ∉

x y

'x

'y

'x x−

, ' 0
', ' 0

' , ' 0

y x x
y x x

y y x x

− ≤

+ − ≤

− − ≤

C

(')CN x

May 2019 10 of 45

A Subgradient Chain Rule

• Suppose : { }pf → ∪ +∞  is closed proper convex

• Suppose G is a p m× real matrix

Then for any x,

() { }()() ()f G x G f Gx G y y f Gx∂ ⊇ ∂ = ∈∂T T


and “usually”

()()()f G x G f Gx∂ = ∂T


May 2019 11 of 45

An Optimality Condition

Let’s go back to

{ }1
min ()n

i iix
f G x

=∑

Suppose we have 1
1, , , nppm

nz w w∈ ∈ ∈    such that

1

() 1, ,

0

i i i
n

i i
i

w f G z i n

G w
=

∈∂ =

=∑ T



The chain rule then implies that
1

0 ()n
i ii

f G z
=

 ∈∂  ∑  , so…

z is a solution to our problem

• This is always a sufficient optimality condition

• It’s “usually” necessary as well

• The iw are the Lagrange multipliers / dual variables

May 2019 12 of 45

The Primal-Dual Solution Set (Kuhn-Tucker Set)

{ }1 1
(, , ,) (1,) (), 0n

n i i i i ii
z w w i n w f G z G w

=
= ∀ = ∈∂ =∑ T

 

Or, if we assume that , Id mn np m G= =


,

{ }1
1 1 1

(, , ,) (1, 1) (), ()n
n i i i i i ni

z w w i n w f G z G w f z−
− =

= ∀ = − ∈∂ − ∈∂∑ T
 

• This is the set of points satisfying the optimality conditions

• Standing assumption:  is nonempty

• Essentially in E & Svaiter 2009:

  is a closed convex set

• In the , Id mn np m G= =


 case, streamline notation:

For 1 1n−∈ × × w , let
1 *
1

n
n i ii

w G w−

=
−∑

May 2019 13 of 45

Valid Inequalities for 

• Take some , ip
i ix y ∈ such that ()i i iy f x∈∂ for 1, ,i n= 

• If (,)z ∈w , then ()i i iw f G z∈∂ for 1, ,i n= 

• So, , 0i i i ix G z y w− − ≥ for 1, ,i n= 

• Negate and add up:

1
(,) , 0 (,)

n

i i i i
i

z G z x y w zϕ
=

= − − ≤ ∀ ∈∑ w w


{ }() 0

() 0

H p p

p p

ϕ

ϕ

= =

≤ ∀ ∈

May 2019 14 of 45

Confirming that ϕ is Affine

The quadratic terms in (,)zϕ w take the form

1 1 1
, , , , 0 0

n n n

i i i i i i
i i i

G z w z G w z G w z
= = =

− = − = − = − =∑ ∑ ∑T T

• Also true in the , Id mn np m G= =


 case where we drop the nth
index

o Slightly different proof, same basic idea

May 2019 15 of 45

Generic Projection Method for a
Closed Convex Set  in a Hilbert Space 

Apply the following general template:

• Given kp ∈, choose some affine function kϕ with
() 0k p pϕ ≤ ∀ ∈

• Project kp onto { }() 0k kH p pϕ= = , possibly with an
overrelaxation factor [,2]kλ ε ε∈ − , giving 1kp + , and repeat…

In our case: 1 nppm= × × ×     and we find kϕ by picking some

, : (), 1, ,ipk k k k
i i i i ix y y f x i n∈ ∈∂ =  and using the construction above

{ }
 is affine

() 0

() 0
() 0

k

k k

k

k k

H p p

p p
p

ϕ

ϕ

ϕ
ϕ

= =

≤ ∀ ∈

>



1kp +

kp



May 2019 16 of 45

General Properties of Projection Algorithms

Proposition. In such algorithms, assuming that ≠ ∅ ,

• { }*kp p− is nonincreasing for all *p ∈

• { }kp is bounded

• 1 0k kp p+ − →

• If { }kϕ∇ is bounded, then { }limsup () 0k
k

k
pϕ

→∞
≤

• If all limit points of { }kp are in  , then { }kp converges to a
point in 

The first three properties hold no matter how badly we choose kϕ

The idea is to pick kϕ so that the stipulations of the last two
properties hold – then we have a convergent algorithm

If we pick kϕ badly, we may “stall”

May 2019 17 of 45

Selecting the Right kϕ

• Selecting kϕ involves picking some , : ()ipk k k k
i i i i ix y y f x∈ ∈∂ ,

1, ,i n= 

• It turns out there are many ways to pick ,k k
i ix y so that the last

two properties of the proposition are satisfied

• One fundamental thing we would like is

1
(,) , 0

n
k k k k k k

k i i i i
i

z G z x y wϕ
=

− − ≥∑w

with strict inequality if (,)k kz ∉w

• The oldest suggestion is “prox” (E & Svaiter 2008 & 2009)

May 2019 18 of 45

The Prox Operation

• Suppose we have a convex function { }: pf → ∪ +∞ 
• Take any vector pr∈ and scalar 0c > and solve

2

'

1arg min (') '
2px

x f x x r
c∈

 = + − 
 

• Optimality condition for this minimization is

10 () ()f x x r
c

∈∂ + −

• So we have 1 () ()y r x f x
c

− ∈∂

• And 1 ()x cy x c r x r
c

+ = + ⋅ − =

• So, we just found , px y∈ such that ()y f x∈∂ and x cy r+ =
• Call this Prox ()c

f r∂

May 2019 19 of 45

Picture

• The choice of , px y∈ such that ()y f x∈∂ and x cy r+ = must

be unique; otherwise f∂ would not be monotone
• If f is closed and proper, then this solution must exist
• Any vector pr∈ can then be written in a unique way as

x cy r+ = , where ()y f x∈∂
o Generalizes projection to a subspace and its complement

x cy r+ =

()10, c r

(,0)r

(,)x y

f∂

May 2019 20 of 45

Prox Does the Job!

• We have an iterate 1(,) (, , ,)k k k k k k
np z z w w= = w

• Take any 1 , , 0k nkc c > and consider (,) Prox ()ik

i

ck k k k
i i f i ik ix y G z c w∂= +

• Then ()k k k k k k k k

i ik i i ik i ik i i i ix c y G z c w c y w G z x+ = + ⇔ − = −

• Implying
2 21, 0k k k k k k k k

i i i i ik i i ik i iG z x y w c G z x c y w−− − = − = − ≥

k k k k
i ik i i ik ix c y G z c w+ = +

(,)k k
i ix y

(,)k k
iz w

iT

May 2019 21 of 45

Prox Finishes the Job

From
2 21, 0k k k k k k k k

i i i i ik i i ik i iG z x y w c G z x c y w−− − = − = − ≥

we have that

1
, 0

n
k k k k

i i i i
i

G z x y w
=

− − ≥∑

and this inequality is strict unless k k
i iG z x= and k k

i iy w= for all i,
which means that (,)k kz ∈w

The entire convergence proof follows from this same relationship.

May 2019 22 of 45

A First Algorithm

• These conditions allow one to prove that the cuts are “deep
enough” and we obtain convergence

Starting with an arbitrary 0 0 0
1(, , ,)nz w w :

For 0,1,2,k = 

1. For 1, ,i n=  , compute ,(,) Prox ()i k

i

ck k k k
i i T i i ix y G z c w= +

(Process operators: Decomposition Step)

2. Define 1
1

(, , ,) ,
n

k k
k n i i i i

i
z w w G z x y wϕ

=

= − −∑

3. Compute 1 1 1
1(, , ,)k k k

nz w w+ + +
 by projecting 1

1(, , ,)k k k
nz w w+


onto the halfspace 1(, , ,) 0k nz w wϕ ≤
(possibly with some overrelaxation) (Coordination Step)

• This simple algorithm combines aspects of E & Svaiter 2009
and Alotaibi et al. 2014

May 2019 23 of 45

Including the Details (Version 1: general case)

• Choose any min max0 2λ λ< ≤ <
• For 1,2,k = 

{ }

{ }

1 1 1 1

1

1
2 2

1

min max
1

, : (), 1, ,

(, ,) proj (, ,) (, ,) 0

max , ,0

[,]

P to find

, where

Pick any

rocess operat r

o s ipk k k k
i i i i i

nk k k k
n n n i ii

nk k
i ii

n k k
i i i ii

k nk k
ii

k

x y y f x i n

u u x x w w G w

v G y

G z x y w

v u

z

θ

λ λ λ

=

=

=

=

+

∈ ∈∂ =

= = =

=

− −
=

+

∈

=

∑

∑
∑

∑

  T

T

 

  

1 , 1, ,

k k
k k

k k k
i i k k i

z v

w w u i n

λ θ

λ θ+

−

= − = 

May 2019 24 of 45

Including the Details (Version 2: , Id mn np m G= =


)

• Choose any min max0 2λ λ< ≤ <
• For 1,2,k = 

{ }
1

1

1
2 2

1

min max
1

1

, : (), 1, ,

, 1, , 1

max , ,0

[,]

1,

 to find

Pick

Process operator

n

s

a y

ipk k k k
i i i i i

k k k
i i i n

nk k k
i i ni

n k k
i i i ii

k nk k
ii

k k k
k k

k k k
i i k k i

x y y f x i n

u x G x i n

v G y y

G z x y w

v u

z z v

w w u i

θ

λ λ λ

λ θ

λ θ

−

=

=

=

+

+

∈ ∈∂ =

= − = −

= +

− −
=

+

∈

= −

= − =

∑
∑

∑


T

 



, 1n −

May 2019 25 of 45

Many Variations Possible in “Process Operators”

1. Inexact processing: the prox operations may be performed
approximately using a relative error criterion
• E & Svaiter 2009

2. Block iterations: you do not have to process every operator
at every iteration; you may process some subset and let

1 1(,) (,)k k k k
i i i ix y x y− −= for the rest, so long as you process each

operator at least once every M iterations
• Combettes & E 2018, E 2017

3. Asynchrony: you may process operators using (boundedly) old
information (,) (,)(,)d i k d i kz w , where (,)k d i k k K≥ ≥ −
• Combettes & E 2018, E 2017

4. Non-prox steps: For Lipschitz continuous gradients,
procedures using one or two gradient steps may be
substituted for the prox operations
• Johnstone and E 2018, 2019

also see Tranh-Dinh and Vũ 2015 + “mix and match”

May 2019 26 of 45

Another Variation: Primal-Dual Scaling

• Method performs projections in primal-dual space

• Consider scaling the problem: , 0i if fα α→ >

• If α is large, dual convergence will be emphasized over primal

• If α is small, primal convergence will be emphasized over dual

• To compensate, use the inner product on 1n+ given by

1 1
1

(, , ,), (, , ,) , ,
n

n n i i
i

z w w z w w z z w w
γ

γ
=

′ ′ ′ ′ ′= +∑ 

and corresponding norm, for any scalar 0γ >

• In the ADMM and related methods the penalty parameter can
compensate for problems scaling, but projective splitting is
different

May 2019 27 of 45

An Implementation Idea: Greedy Block Selection

• Our separating hyperplane is

1 1
1

(, , ,) , 0
n

k k
k n i i i i

i
z w w G z x y wϕ −

=

= − − =∑

• If we project without any overrelaxation, we will have

1 1 1 1 1
1 1

1
(, , ,) , 0

n
k k k k k k k

k n i i i i
i

z w w G z x y wϕ + + + + +
−

=

= − − =∑

Z

{ }() 0k kH p pϕ= =

1kp + kp

May 2019 28 of 45

Greedy Block Selection (2a)

1 1

1
, 0

n
k k k k

i i i i
i

G z x y w+ +

=

− − =∑

• If all the 1 1,k k k k
ik i i i iG z x y wϕ + += − − are zero, we are in 

• Otherwise, some are positive and some are negative

May 2019 29 of 45

Greedy Block Selection (2b)

1 1

1
, 0

n
k k k k

i i i i
i

G z x y w+ +

=

− − =∑

• If all the 1 1,k k k k
ik i i i iG z x y wϕ + += − − are zero, we are in 

• Otherwise, some are positive and some are negative

• Pick a block with 0ikϕ <

• Processing block i results in 0ikϕ ≥

May 2019 30 of 45

Greedy Block Selection (2c)

1 1

1
, 0

n
k k k k

i i i i
i

G z x y w+ +

=

− − =∑

• If all the 1 1,k k k k
ik i i i iG z x y wϕ + += − − are zero, we are in 

• Otherwise, some are positive and some are negative

• Pick a block with 0ikϕ <

• Processing block i results in 0ikϕ ≥

• Will make the entire sum positive again

• ⇒ Can cut off the current point by processing just one block

May 2019 31 of 45

Greedy Block Selection (3)

• A simple “greedy” heuristic: prioritize the block i with the
most negative ikϕ

This ignores several things:

• How large will ikϕ become after we process the block?

• The projection formula onto the hyperplane is

1 2

()k k
k k k

k

pp p ϕ ϕ
ϕ

+

 
= − ∇  ∇ 

So, the length of the step is

()k k

k

pϕ
ϕ∇

The heuristic makes some attempt to obtain a large
numerator, but ignores the denominator

May 2019 32 of 45

Computational Experiments: LASSO

LASSO problems:

{ }21
2 1

min
dx

Qx b xλ
∈

− +


Partition Q into r blocks of rows, set 1n r= +

21
2 1

1
min

d

r

i ix i
Q x b xλ

∈ =

 
− + 

 
∑



So we can set

1
() (), 1.. 1i i i i nT x Q Q x b i n T λ= − ∀ ∈ − = ∂ ⋅T

• At each iteration, process blocks { , }i n , where 1.. 1i n∈ − is
selected randomly or greedily

• Measure the number of “Q-equivalent” matrix multiplies

May 2019 33 of 45

Augmented Cancer RNA Data: Dense, 3,204 × 20,531

“PSFor” : forward steps for 1, ,i r= 
“PSBack” : proximal steps
“(10,G)” : 10r = , greedy selection

526MB
of data

May 2019 34 of 45

Hand Gesture Data: Dense, 1,500 × 3,000

36MB
of data

May 2019 35 of 45

drivFace Data: Dense, 606 × 6,400

31MB
of data

May 2019 36 of 45

Randomly Generated Data: Dense, 1,000 × 100,000

800MB
of data

May 2019 37 of 45

A (not Very Realistic) Portfolio Selection Application
1
2

1

min
ST

1, 0m
ii

x Qx
r x R

x x
=

≥

= ≥∑

T

T

• Q is a 10,000 × 10,000 dense positive semidefinite matrix

• Model as minimizing the sum of three functions 1 2 3f f f+ +

1 1
1 2 22

0, 1, 00,
() () ()

, , otherwise

m
ii

x xr x R
f x x Qx f x f x

r x R
=

 = ≥≥ = = = 
+∞ < +∞ 

∑T
T

T

• 1f has a Lipschitz/cocoercive gradient

• 2 3,f f have simple, linear-time prox operators

• The size and density of Q makes this problem hard for
standard QP solvers

May 2019 38 of 45

Run Time Results (Mixed)

• R = (Rfac) × (average value of ir)

0

5

10

15

20

25

30

Rfac=0.5 Instances Rfac=0.8 Instances Rfac=1 Instances Rfac=1.5 Instances

Average Run Time Over 10 Problem Instances (NumPy Implementation)

Projective, one forward step for f1 Pedregosa & Gidel 3-op splitting

Chambolle-Pock primal-dual (product space) Primal-dual Tseng (Combettes + Pesquet)

Malitsky + Tam forward-reflect backward (primal-dual)

May 2019 39 of 45

Sparse Group-Regularized Logistic Regression, 1 2 0.05λ λ= =

()()
0

0
1

11 2 2,
min log 1 exp ()

d

n

i i Gx x i G
y x a x x xλ λ

∈ ∈ = ∈

 
+ − + + + 

 
∑ ∑

 

where  is a disjoint collection of subsets of {1, , }d

Breast cancer gene expression dataset (7705 genes × 60 patients)

May 2019 40 of 45

Sparse Group-Regularized Logistic Regression, 1 2 0.5λ λ= =

May 2019 41 of 45

Sparse Group-Regularized Logistic Regression, 1 2 0.85λ λ= =

May 2019 42 of 45

Another Application: Stochastic Programming

• Multi-stage linear programming problem over an unfolding tree
of scenarios

• Application of projective splitting in a working paper by E,
Watson and Woodruff

• None of the iG are the identity

• Subproblems are quadratic programming problems for a single
(multi-stage) scenario

• Results in a method resembling Rockafellar and Wets’
progressive hedging (PH) method (blocks = scenarios)

• PH synchronous and processes every scenario at every iteration
• Our method is asynchronous and can process as few as one

scenario per iteration
• Implemented within the Python-based PySP modeling/solution

environment (Watson, Woodruff & Hart 2012)

May 2019 43 of 45

Preliminary Results on a 32-Core Workstation (Woodruff)

10,000N = scenarios in 20n = bundles, times in seconds

Blue points are PH on the same scenarios (and bundles)

• CPLEX cannot solve the extensive form of this problem in 3
days with 96 cores and 1TB RAM

May 2019 44 of 45

Something to Keep in Mind

The projection operations, e.g.

{ }1
2 2

1

1

1

max , ,0

1, , 1

n k k
i i i ii

k nk k
ii

k k k
k k

k k k
i i k k i

G z x y w

v u

z z v

w w u i n

θ

λ θ

λ θ

=

=

+

+

− −
=

+

= −

= − = −

∑
∑



• Require linear time (less in a parallel implementation)

• But do touch every primal and dual variable

• If processing an operator requires only a simple linear-time
operation, one might as well do it every iteration

• Higher-complexity operations (matrix multiplication, quadratic
programming) are different

May 2019 45 of 45

Conclusions

• Projective splitting is a powerful framework for decomposing
convex optimization problems

• Numerous variations are possible

• Does not care how many operators there are

• Accomplished “full splitting” when linear coupling matrices iG
are present

• Has applications in

o Data analysis / statistics

o Multistage stochastic programming

o Vision and imaging ????????????????????????

	Projective Splitting Methods for Decomposing Convex Optimization Problems

