LL:
.:"

......

Projective Splitting Methods for
Decomposing Convex Optimization
Problems

Jonathan Eckstein
Rutgers University, New Jersey, USA

Various portions of this talk describe joint work with
Patrick Combettes — NC State University, USA
Patrick Johnstone — Rutgers University, USA
Benar F. Svaiter — IMPA, Brazil
Also: Jean-Paul Watson — Sandia National Labs, USA
David L. Woodruff — UC Davis, USA

T{UT( ERS Funded in part by NSF grants
"""" CCF-1115638, CCF-1617617, and
R[ ITGERS AFOSR grant FA9550-15-1-0251

May 2019

1 of 45




Introductory Remarks

e | did some of the earlier work on an optimization algorithm
called the ADMM (the Alternating Direction Method of
Multipliers)

o But not the earliest work
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e | know that the ADMM has been used in image processing
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Introductory Remarks

e | did some of the earlier work on an optimization algorithm
called the ADMM (the Alternating Direction Method of
Multipliers)

o But not the earliest work

e | know that the ADMM has been used in image processing
because about 15 years ago | started being asked to referee a
deluge of papers with this picture:

e Today | want to talk about an algorithm that uses similar
building blocks to the ADMM but is much more flexible
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More General Problem Setting

The algorithms in this talk can work for monotone inclusion
problems of the form

0e > GT,(Gx)
=1

where

e H,,...,H are real Hilbert spaces

o T. :'H; ='H; are (generally set-valued) maximal monotone
operators, 1=1,...,n

e G, :'Hy="H; are bounded linear maps, i=1,...,n

However, for this talk we will restrict ourselves to...
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A General Convex Optimization Problem

min{ > (G|
e Fori=1...,n, f:R" - RuU{+w} is closed proper convex

e Fori=1...,n, G isa p,xm real matrix

e Assume you have a class of such problems that is not suitable
for standard LP/NLP solvers because either

o The problems are very large
o They is fairly large but also dense
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Subgradient Maps of Convex Functions, Monotonicity

The subgradient map of of a convex function f :RP — R U {400} is
given by

8f(x):{y‘ f(x)> f(x)+<y,x'—x>Vx'eRp}.
This has the property that
yedf(x),y'edf (x) = (x-x,y-y")=0

| F(X)— £ ()2 (y, X'~ X)
\\ f(x)—f(x)=(y', x=x")

0>(y'-y,x—x")

Proof:
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Normal Cone Maps
The indicator function of a nonempty closed convex set C is

0, XxeC
50()(): 1o, XxeC

Its subgradient map is the normal cone map N, of C:

{y[(y,x=x)<0W¥x'eC}, xeC

85C(X):NC(X):{@ ‘e C

.
.
.
.
.
.
.
.
.
.
LS

C
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A Subgradient Chain Rule
e Suppose f:RP — Ru{+w} is closed proper convex

e Suppose G Is a pxm real matrix

Then for any x,

a(f 0G)(x) 2 G"f (Gx)

(GTy| yeof (Gx)}
and “usually”
o(f oG)(x) =G'of (Gx)
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An Optimality Condition
Let’s go back to

min{ " (G|

Suppose we have ze R™,w, e R™,...,w e R"™ such that

w. € of. (G,z) 1=1...,n
> G'w, =0
i=1

The chain rule then implies that 0 8[2

=1

f. oGiJ(z), SO...

Z 1s a solution to our problem
e This is always a sufficient optimality condition
o |t’s “usually” necessary as well

e The w, are the Lagrange multipliers / dual variables
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The Primal-Dual Solution Set (Kuhn-Tucker Set)

:{(z,wl,...,w

Or, if we assume that p. =m,G, =1d_,,

:{(z,wl,...,Wn_l)

(Vi=1,...n) w € (G2), Y Gw, = o}

(Vi=1..n-1)w e (G2), -3 G w, e, (z)}

e This is the set of points satisfying the optimality conditions

e Standing assumption: S IS honempty

e Essentially in E & Svaiter 2009:

S 1S a closed convex set

e In the p,=m,G, =1d_, case, streamline notation:

For we Hyx--xH,,, let w, 2 ->""'G'w
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Valid Inequalities for S
e Take some x,y, € R"” such that y, e of. (x,) fori=1,...,n
o If (z,w)e S, then w. eof,(G.z) for i=1,...,n
¢ S0, (X% —Gz,y; —w; )0 fori=1...n

e Negate and add up:

o(z,wW) = ZGZ X, Y — _O Y(z,w)e S

={ p|o(p)=0}
</¢)(p)<0 VpeS

May 2019 13 of 45



Confirming that ¢ Is Affine

The guadratic terms in ¢(z,w) take the form

S

i=1 i=1

e Also true In the p, =m,G, =1d_, case where we drop the nt
iIndex

o Slightly different proof, same basic idea
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Generic Projection Method for a
Closed Convex Set S in a Hilbert Space 'H

Apply the following general template:

e Given p“ e, choose some affine function ¢, with
o (p)<0VpeS

e Project p“ onto H, ={ p| ¢, (p) =0}, possibly with an
overrelaxation factor 4, €[g,2—¢], giving p,_,, and repeat...

Pk
¢, 1s affine

-— H, :{ p| (Pk(p)zo}
9. (p)<0 VpeS
?.(p) >0

In our case: H=R"xR™x-.--xR™ and we find ¢, by picking some
X,y e Ry eof (x),i=1,...,n and using the construction above
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General Properties of Projection Algorithms
Proposition. In such algorithms, assuming that S = &,

o {|p - p
e {p“} is bounded

° pk+1_pk_)0

} is nonincreasing for all p S

e If (Vg } is bounded, then limsup{gp, (p*)} <0

k—o0

e If all limit points of {p*} are in S, then {p“} converges to a
pointin S

The first three properties hold no matter how badly we choose ¢,

The idea is to pick ¢, so that the stipulations of the last two
properties hold - then we have a convergent algorithm

If we pick ¢, badly, we may “stall”

May 2019 16 of 45



Selecting the Right ¢,

e Selecting ¢, involves picking some x*,y“ e R” : y* e of (x),
1=1...,n

e It turns out there are many ways to pick x,y* so that the last
two properties of the proposition are satisfied

e One fundamental thing we would like is
q)k(zk’wk) = Z<Gizk _Xik’ Yik _Wik> =0
=1

with strict inequality if (z*,w") e S

e The oldest suggestion is “prox” (E & Svaiter 2008 & 2009)
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The Prox Operation

e Suppose we have a convex function f :RP — R U {+o0}
e Take any vector r e R” and scalar ¢ >0 and solve

c=argmin| 100+ L] |
x'e RP 2C

e Optimality condition for this minimization is

0eof (x)+%(x—r)

e S0 we have yél(r—x)eéf (x)
C

e And x+cy:x+c£(r—x):r
C

e S0, we just found x,y € R” such that y € of (x) and x+cy=r
e Call this Prox:; (r)
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Picture

X+Cy=r of

/

<€

e The choice of x,y e R” such that y € of (x) and x+cy =r must
be unique; otherwise of would not be monotone
e |f f Is closed and proper, then this solution must exist
e Any vector r e R? can then be written in a unique way as
X+cy=r, where y e of (x)
0 Generalizes projection to a subspace and its complement
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Prox Does the Job!

e We have an iterate p* = (z*,w") = (z*,w¥,...,w")
e Take any c,,...,C, >0 and consider (x,y;) = Prox@ (G,z* + ¢, w)

A
\ ) ) ) k T
Ti/f‘%k)ﬁ =Gz +Cj W

(X, ¥i)

<€

e Then Xik + Ciy Yik — Gizk +CikWik = Cik(yik _Wik) — Gizk B Xik
e Implying <Gizk - X, ¥ —Wik> =C, HGizk = xikH2 = Ci‘kluyik —WikHZ >0
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Prox Finishes the Job

From
2 2
k Kk Kk Kk Kk k -1 Kk Kk

we have that

Zn:<Gizk — X, ¥ —Wik> >0

=1
and this inequality is strict unless G,z“ = x‘ and y‘ =w' for all i,
which means that (z,w*) e S

The entire convergence proof follows from this same relationship.
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A First Algorithm

e These conditions allow one to prove that the cuts are “deep
enough” and we obtain convergence

Starting with an arbitrary (z°,w;,...,w’):

For k=0,12,...

1. Fori=1,...,n, compute (x’,y;)=Prox;* (Gz" +cw)
(Process operators: Decomposition Step)

2. Define ¢ (z,W,,..., W) = Zn:<Giz—xik, A —Wi>

k+1 k+1 k+1 k+1 k)

3. Compute (z ) by projecting (z ey W
onto the halfspace gok(z,wl,..., w ) <0
(possibly with some overrelaxation) (Coordination Step)

e This simple algorithm combines aspects of E & Svaiter 2009
and Alotaibi et al. 2014
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Including the Detalils (Version 1: general case)

e Choose any O0< A . <A <2
e For k=1,2,...

Process operators to find x, y‘ e R™ : y* e of (x),i=1,...,n

(UX,...,u") = projg(xlk,...,x:;), where G :{(wl,

v _Zu =1 |

max{zi:1<Giz AR —Wi>,0}
e

Pickany A €[4 .., A . ]

2 =7~ 2 9.V

Wt =w -4 0uf, i=1...,n

K =
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Including the Details (Version 2:p, =m,G, =1d )

e Choose any 0< A <2
e For k=1,2,...

May 2019

min — ““max

Process operators to find x, y‘ e R” :

u —x —G,xn, 1=1....n-1

V= TGy +y

max{zi_l<(3iz A —wi>,0}
AR |

Pick any A e[ .., 4. ]

2= 2~ 2 G

Wt =w -2 0u i=1...,n-1

K=

yi e of (x),i=1,

N
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Many Variations Possible in ““Process Operators”™

Inexact processing: the prox operations may be performed
approximately using a relative error criterion

e E & Svaiter 2009

. Block iterations: you do not have to process every operator

at every iteration; you may process some subset and let
(x, ) = (X7, y*) for the rest, so long as you process each
operator at least once every M iterations

e Combettes & E 2018, E 2017

. Asynchrony: you may process operators using (boundedly) old

information (z*, w*®Y, where k>d(i,k) >k - K
e Combettes & E 2018, E 2017

. Non-prox steps: For Lipschitz continuous gradients,

procedures using one or two gradient steps may be
substituted for the prox operations

¢ Johnstone and E 2018, 2019

also see Tranh-Dinh and Vi 2015 + “mix and match
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Another Variation: Primal-Dual Scaling
e Method performs projections in primal-dual space

e Consider scaling the problem: f, > af,, >0

o If o Is large, dual convergence will be emphasized over primal

o If o I1s small, primal convergence will be emphasized over dual

e To compensate, use the inner product on K" given by
(@ Wy W), (2 W W) = y<2,2’>+;<wi,wi’>

and corresponding norm, for any scalar y >0

e In the ADMM and related methods the penalty parameter can
compensate for problems scaling, but projective splitting is
different
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An Implementation Idea: Greedy Block Selection

e Our separating hyperplane is
o (2, W,...,W ) :Z<Gi2—xik, Y- —Wi>=0
=1

— P

pk+1

— Hk:{p|¢k(p)20}

e |f we project without any overrelaxation, we will have

o, (Zk+l k+1 k+1) Z<G Zk+1 . X| ’ y. k+1> 0

May 2019 27 of 45



Greedy Block Selection (2a)
Z<Gi 7K+ _ Xik’ yik _ Wik+1> _0
=1

o If all the ¢, =<Gizk+1—xik, VS —w.k+1> are zero, we are in S

e Otherwise, some are positive and some are negative
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Greedy Block Selection (2b)

Zn:<Gi 24— Xy W) =0
i=1

e If all the ¢, =<Gizk+1—xik, VS —w.k+1> are zero, we are in S

e Otherwise, some are positive and some are negative

e Pick a block with ¢, <0

e Processing block i results in ¢, >0
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Greedy Block Selection (2c)

n

Z<Gi K+ _ Xik | yik _ Wik+1> _0

=1

e If all the ¢, =<Gizk+1—xik, VS —w.k+1> are zero, we are in S

e Otherwise, some are positive and some are negative

e Pick a block with ¢, <0
e Processing block i results in ¢, >0

e Will make the entire sum positive again

e — Can cut off the current point by processing just one block
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Greedy Block Selection (3)

e A simple *““greedy” heuristic: prioritize the block 1 with the

most negative @,

This ignores several things:

e How large will ¢, become after we process the block?

e The projection formula onto the hyperplane is

¢k(pk)j
P = Py — Vo
k+1 k {vaok”Z k

So, the length of the step is

o (P)
Ve

The heuristic makes some attempt to obtain a large
numerator, but ignores the denominator

May 2019
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Computational Experiments: LASSO
LASSO problems:

min | £Qx b + 2[x],

XeRd

Partition Q into r blocks of rows, set n=r+1

min 33t +Al

=1
So we can set

Ti(X):QiT(Qix—bi)1ViEl"n_l Tn :la“.“l

e At each iteration, process blocks {i,n}, where iel..n-11s
selected randomly or greedily

e Measure the number of “Q-equivalent” matrix multiplies
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Augmented Cancer RNA Data: Dense, 3,204 x 20,531

relative error function values

gene
526MB
—— PSFor(10,G)
1004 i of data
—— PSBack(10,G)
10-2 - —— RE-ADMM
107% 1
1075 -
lD_E‘
lD—]I}_
0 EDICIIIJ 4[}:[][! E:DI{}ID BDI{}U lD{;tﬂﬂ lEdﬂﬂ 14{I}CIG
Q equivalent multiplies
“PSFor” : forward steps for i=1,...,r
“PSBack™ : proximal steps
“(10,G)” : r =10, greedy selection
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Hand Gesture Data: Dense, 1,500 x 3,000

hand

10! PSFor(10,G) 36MB

o1 I —— FISTA of data
N —— PSBack(10,G)
L0-3 | —— RE-ADMM

13—5_
lﬂ—?_
lD—E_

10—11_

relative error function values

=

S
=
Lt
1

=

<
=
LA
1

I I I I I I I
0 500 1000 1500 2000 2500 3000 3500 4000
Q equivalent multiplies
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relative error function values

101

101

103

107

drivFace Data: Dense, 606 x 6,400

drivFace

PSFor(10,G)
FISTA
PSBack(10,G)
RE-ADMM

I
2000

I
4000

I I I I I I
6000 8000 10000 12000 14000 16000

Q equivalent multiplies

31MB
of data
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Randomly Generated Data: Dense, 1,000 x 100,000

random
—— PSFor(10,G) 800MB
Lo-1 - —— FISTA of data
\ — PSBack(10,G)

w 1073 1 \ —— RE-ADMM
g
> 1075 A '
=
Q
W] —7
= 10 ]
i
S 1p-9
= 1077 A
L
g
5 lﬂ—ll_
1o
v

lﬂ—lEI_

13—15_

I I I I I I I I
0 200 400 600 800 1000 1200 1400 1600

Q equivalent multiplies
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A (not Very Realistic) Portfolio Selection Application

min 1 x'Qx
ST r'x>R
> %=1 x>0

e Qisa 10,000 x 10,000 dense positive semidefinite matrix

e Model as minimizing the sum of three functions f + f, + f,

+0, r'x<R +o0, otherwise
o f, has a Lipschitz/cocoercive gradient

o f,, f, have simple, linear-time prox operators

e The size and density of Q makes this problem hard for
standard QP solvers

May 2019 37 of 45



Run Time Results (Mixed)

Average Run Time Over 10 Problem Instances (NumPy Implementation)

30
25
20
15
10
0 I I I
Rfac=0.5 Instances Rfac=0.8 Instances Rfac=1 Instances Rfac=1.5 Instances
H Projective, one forward step for f1 mPedregosa & Gidel 3-op splitting
u Chambolle-Pock primal-dual (product space) = Primal-dual Tseng (Combettes + Pesquet)

m Malitsky + Tam forward-reflect backward (primal-dual)

e R = (Rfac) x (average value of )
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Sparse Group-Regularized Logistic Regression, A, =4, =0.05

i {3 oa(u x0( 6 2 )) - 4, + 2 Eel

d
XpeR,xeR GeG

where G Is a disjoint collection of subsets of {1,...,d}

107 3

101 5

1072 H

1 —— pslfbt
107 5 ps2fbt
| —¥ ada3op
107+ -l cp-bt

] —< tseng-pd
13-5—; @ fib

0 5 10 15 20 25 30

time (s)

Breast cancer gene expression dataset (7705 genes x 60 patients)
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Sparse Group-Regularized Logistic Regression, 4, =4, =0.5

May 2019

1071 4
1077 -
102
1077 |
—¥-
—-
10-0 1 7 tseng-pd
& fib
0 5 10 15 20 25

time (s)
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Sparse Group-Regularized Logistic Regression, A, =4, =0.85

il _

1077 1

—— pslfbt
lD—E'_

—0— ps2fbt

—¥— ada3op
lD—]l_

—- cp-bt
1o-13 —<— tseng-pd

- fib

0 5 10 15 20 25 30

time (s)
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Another Application: Stochastic Programming

e Multi-stage linear programming problem over an unfolding tree
of scenarios

e Application of projective splitting in a working paper by E,
Watson and Woodruff

e None of the G, are the identity

e Subproblems are gquadratic programming problems for a single
(multi-stage) scenario

e Results in a method resembling Rockafellar and Wets’
progressive hedging (PH) method (blocks = scenarios)

e PH synchronous and processes every scenario at every iteration

e Our method is asynchronous and can process as few as one
scenario per iteration

e Implemented within the Python-based PySP modeling/solution
environment (Watson, Woodruff & Hart 2012)
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Preliminary Results on a 32-Core Workstation (Woodruff)

10.04 ~

10.03 4

10.02 ~

=
e
=)
=

Objective function
=
o
o
o

9.99

9.98

9.97

T T T T T
20 40 60 80 100
computational time

N =10,000 scenarios in n= 20 bundles, times in seconds
Blue points are PH on the same scenarios (and bundles)

e CPLEX cannot solve the extensive form of this problem in 3
days with 96 cores and 1TB RAM
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Something to Keep in Mind
The projection operations, e.g.

max {Z?:1<Gi z— X,y - ), O}
B Y W Y
Zk+1 _ Zk _ﬂkgkvk

Wt =w -4 0u¢ i=1...,n-1

e Require linear time (less in a parallel implementation)

e But do touch every primal and dual variable

e |f processing an operator requires only a simple linear-time
operation, one might as well do it every iteration

e Higher-complexity operations (matrix multiplication, quadratic
programming) are different
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Conclusions

e Projective splitting is a powerful framework for decomposing
convex optimization problems

e Numerous variations are possible
e Does not care how many operators there are

o Accomplished “full splitting” when linear coupling matrices G
are present

e Has applications in
o Data analysis / statistics
o Multistage stochastic programming
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